
Per Resource Events
& 

Solid-PREP

Rahul Gupta

2nd Solid Symposium, Leuven



I will start with some shameless self promotion. I am developing a new operating 
environment, with the teeny-tiny ambition to replace all desktops and homescreens, 
called Syntropize. I believe the desktop was a historical mistake, but that is a whole 
other discussion.



Syntropize

SOLID

Syntropize allows users to use Solid PODS to store data online. I do not need to 
explain to this crowd why Solid is a great choice. And I want notifications to get real 
time update from my pods. However, working with Solid notifications sometimes feels 
like…



This! Sorry that slide is for the better mousetrap presentation! 



Solid Notifications Protocol

I meant like this! Pavlik has already done a wonderful job of explaining Solid 
Notifications Protocol. 

Even then, when we put all of it together, as a co-author of this specification, this is 
quite overwhelming.

And this diagram does not even account for the fact that the entities on the server 
side and on the client side need to co-ordinate. 



Sometime we want something very simple…



Per Resource Events

This is where the Per Resource Events protocol comes in. A very simple notification 
flow… We have one request to a resource and we get one response with first the 
representation and then notifications. We can omit the representation conditionally or 
completely as we will see later.



Ordinary Request
GET /foo HTTP/1.1
Host: example.org
Accept: text/plain

If this is what a standard HTTP Request to Solid resource looks like…



Per Resource Events Request
GET /foo HTTP/1.1
Host: example.org
Accept: text/plain
Accept-Events: “prep”

To get PREP notifications we add a single header. 

(The Accept-Events header is completely general. It can be used to negotiate other 
notification protocols that use different fields, different framing and different 
semantics!)



Ordinary Response
HTTP/1.1 200 OK
Last-Modified: Sat, 1 April 2023 10:11:12 GMT
Transfer-Encoding: chunked
ETag: 1234abcd
Content-Type: text/plain

Hello World!

Suppose this were the ordinary response



Response/1
HTTP/1.1 200 OK
Last-Modified: Sat, 1 April 2023 10:11:12 GMT
Transfer-Encoding: chunked
ETag: 1234abcd
Content-Type: text/plain
Vary: Accept-Events
Accept-Events: PREP; accept=message/rfc822
Events: protocol=PREP, status=200
Content-Type: multipart/mixed; boundary=MAIN-SEPARATOR

--MAIN SEPARATOR
Content-Type: text/plain

Hello World!
--MAIN SEPARATOR

I’ll show you the response in 2 parts:

1. How the representation sent is changed
2. How notifications are sent

The response with notifications adds three headers
● The Events header: which tells the client what type of notifications have been 

negotiated
● The Vary header: which says the response changed because of the events 

header
● And also an Accept-Events header: which tells what notifications might be 

negotiated the next time
 
The notifications response replaces the content type with multipart/mixed and then 
moves the representation 
in the first part of the multipart.

Following that, the second part is the notifications response of type multipart/digest. 
Each digest part is a notification. 



Response/2

Content-Type: multipart/digest; boundary=MESSAGE-SEPARATORC

--MESSAGE-SEPARATOR

Method: PUT
Date: Sat, 1 April 2023 10:11:12 GMT
Event-ID: 1234
E-tag: abc123
--MESSAGE-SEPARATOR

Method: DELETE
Date: Sat, 1 April 2023 10:11:12 GMT
Event-ID: 1234
--MESSAGE-SEPARATOR--
--MAIN-SEPARATOR--

Here we see the notifications. 

The first one is for a PUT request that re-writes the content of the resource. Had we 
added a delta parameter in the request, the notification would have body 

The second one is for a DELETE request. Since the resource ceases to exist, after 
the notification the notification response stream is closed as per the rules of multipart 
in RFC2046.



Request
Notifications Only

GET /foo HTTP/1.1
Host: example.org
Accept: text/plain
Accept-Events: “prep”
Last-Event-ID: *

And suppose you want notifications without the representation.

The client can specify the last-event-id (repurposed from SSE) as star. This tells 
server to send notification from whatever ID it generates next. The response now will 
be just multipart/digest part.



Request
Negotiating the notification format

GET /foo HTTP/1.1
Host: example.org
Accept: text/n3
Accept-Events: “prep”; accept=application/ld+json

I will now show you a couple of typical request variations. 

PREP allows clients to negotiate the content-type of notifications. And it reuses 
parameters with the same names as HTTP fields to do so.

In Solid, we often want notifications from RDF resources. So, here we are negotiating 
notifications in everybody’s favourite media type - JSON LD or shall I say LD plus 
JSON?



Solid-PREP
● Companion specification for notifications format from 

Solid/Linked Data resources

○ https://github.com/solid/solid-prep

● Shares message semantics (formats, triggers etc) with Solid 

Notifications for RDF resources

Solid-PREP is a companion specification that specifies the notifications format from 
Solid/Linked Data resources in Solid PODS. Our goal is to ensure that message 
format for Solid Notifications and PREP are identical, the client gets the same 
notification, no matter what protocol they choose to get notifications using.

Let me remind you that PREP can be used on non-RDF resources as well, in which 
we use can content negotiate another notification format suitable for that resource.

https://github.com/CxRes/solid-prep


Comparison with Solid Notifications
PREP

● Single request

● Uses Streaming HTTP 
Only

● Single Resource 
Notifications

Solid Notifications

● Two requests 
(Requires Discovery)

● Supports multiple channel 
types

● Supports Notifications from 
multiple resources

Let me emphasize that PREP is a complementary notifications mechanism to Solid 
Notifications. The two address the needs for different audiences.

If you need to send notifications of a different protocol such as websockets or 
webhooks, you are still going to use Solid Notifications. If you want notifications from 
multiple solid resources over a single connection again you would want to use Solid 
Notifications.

However, if you are looking to get notifications from one resource at a time and want 
to connection with a single request, PREP is great option for you.



Implementation

● Available as Express Middleware
○ Express-Accept-Events

○ Express-PREP

○ Express-Events-Negotiate (for negotiating other protocols)

● (partially) Implemented in Node Solid Server

● Green Light from the Community Solid Server



Demo!



Questions


